
PORTAL II MULTIPLAYER

Authors:

Micael Silva

04/26/2022

Table of Contents

Table of Contents 2

First Person Character 3
Firing and Spawning Portals 3
Weapon Inventory 4
Weapon Switching 5
Health System & Damage 6

Portal System 7
Portal Self Adjustment 7
Traveling Between Portals 8
Portal Illusions 9
Redirecting Shots & Projectiles 10

Weapons 11
Weapon Base 11

Rocket Launcher 11
Assault Rifle 12
Shotgun 12

Ammo 13
Ammo Base 13

Game Start 14
Color Attribution & Match Start 14

Sessions 15

External Info 16
Internet Sources 16
Book Sources 16

1. First Person Character
1.1. Firing and Spawning Portals

Before we can fire any of the projectiles we have to check that the player is looking at
an object that will support those same projectiles when they collide.

So to make this happen we start by drawing a line from the center of the player's
camera to his forward vector, if this line collides with an actor we check if the actor has the
tag that we specified earlier, in the end we are looking for the PortableWall Tag, if the
actor returns this tag we can then fire the desired projectile.

To avoid this check being done every frame we use a timer with a small time interval,
giving in the end the same result, but remains more optimized.

If the conditions are met we can then fire the projectile, this projectile will spawn with
a default impulse and will check if it hits with an actor that has the PortableWall Tag, if so, it
spawns the associated portal. We don't destroy the projectile after spawning the portal
because the Portal spawning functions contain a chain of linked behaviors and it will cause
a small delay to destroy the portal, as so, we destroy the projectile inside the Portal
Spawning function.

1.2. Weapon Inventory

The player has an inventory that is populated by the weapons that he picked up.
When he finds a new weapon he will automatically swap from his previous weapon to the
new one.

When trying to pick up the same weapon the player will not be able to add it to his
inventory since he already has it.

Then we replicate the current weapon that the player is holding to all other clients.

1.3. Weapon Switching
The weapon switching is simply a cycle through an array of the weapons inventory,

when pressing Q we will equip the previous weapon, when pressing E we will equip the
more recent weapon that has been picked up.

After that we replicate the current weapon that the player is holding to all other
clients.

1.4. Health System & Damage
First of all, why did we code our own instead of using the one that is provided by

Unreal. Well, we've never liked using things that are given to me without knowing how to
make them, this sounds stupid for some people but we believe that by doing our things, we
learn way faster, while also, learning with our mistakes. As so, continuing with the health
system and damaging the player.

We start by getting the amount of damage to apply on the player’s health system
and who applied the damage, then we check if the player who received the damage is not
trying to kill himself.

Then we check if our player’s health is enough to keep him alive or if we have to kill
him. If we have to keep him alive the game continues and his health is updated, if not, we
have to respawn him.

On the player's death we have to clamp our values as well prevent him from taking
more damage from future hits. We also made him ragdoll on death so the player who
killed him could have some visual feedback. We save our body colors and then we
respawn the player by resetting the player Pawn and after that we destroy it. After that we
apply the saved cosmetics and we replicate them to all the other players.

2. Portal System
2.1. Portal Self Adjustment

Once we create the portal and receive the information from the projectile, mainly we
want to know the location where it collided and the Impact Normal transformed into a
Rotator so we can place this portal in the desired location, but before we create the portal
we need to replace the old one. Once we replace it we tell you which portal when the player
collides, the player should be teleported to that same other portal, so having a Target the
player can already know where he is going after colliding with it. Next we check the
placement of the newly created portal.

First of all we have to get the vectors associated with the portal we want to adjust
and get its limits, these limits are then used to create points where we draw a line to the
inside of the object and check if they really collide with something, but for this logic to work
we first have to know which object to compare at all its points, to do this we check at the
center of the projectile's impact which object it collided with, then we save that object and
we are ready to check if at each point the same object exists.

If this object exists in all the points it is not necessary to make adjustments, but if it
doesn't exist in the vertical or horizontal points we adjust it according to the point where it
doesn't exist. it is important to mention that there is no need to make adjustments from a
diagonal point because for a diagonal point to be outside an object, or not find the same
object that the center found, because for a diagonal point to be outside then either a
horizontal or vertical point will be outside too. so we only check for the really important
points, the horizontal and vertical points.

To adjust the position of the portal and the way we do it, we end up using a for loop
and for each point we apply a transformation in the desired vector, the problem that followed
was to make the adjustments small, and with the same distance. for this to happen when we
apply the transformation to the desired vector we multiply it by the current index and divide it
by the same giving transformations always with the same distance, whenever we do a
transformation we have to re-trace the control lines to know if it is necessary to redo the
transformation in the desired direction. Then we repeat this transformation until the object
traces the control line and finds in that same point the same object that the center has as
reference.

If it then finds the same reference object then we can move on to the next point that
needs to be adjusted, if it no longer needs to be updated it moves on to the next, and so
on until all the checks are done.

But if it exceeds the maximum number of transformations it means that with
the transformations made the portal ended up adjusting more than half of its length, so
we destroy the portal to prevent it from having such a large adjustment.

2.2. Traveling Between Portals

To teleport the player we need to know when he is in the portal zone, if he is we start
checking if all the conditions are valid for the teleport to happen. If he is not in the portal
zone, there is no need to check the conditions.

First we verify that the player is crossing the portal, to do this we create a Plane and
we Validate if LastPosition and Point meet their positions with the Plane.

Then we check if the player is at the front of the portal, this condition is validated if
the dot product of the created Plane is greater than the point we passed in the function, this
point being the player's location relative to the portal. Then, if all the previous conditions are
valid, we give permission to the player to be teleported.

To teleport the player, first we start by saving his speed to later apply after
teleporting, we also convert the position and rotation of the player relative to the portal then
Set the player Location and Rotation when Teleporting to the portal, after that Adjust the
player Control rotation in so he faces the same direction and the same angle that he enters
in the portal, after that we can set the speed of the new player and reverse the speed to
maintain the flow of the player movement since the rotation of the player will be reversed
because he enters the portal with one rotation and after being teleported we reverse that
rotation.

2.3. Portal Illusions

To make the portal illusion we must convert the Position and Rotation of the player
Camera.

As so the SceneCapture location and rotation of that portal’s Target must be updated
every frame to maintain the illusion of the portal, just like a “window”, then we should have a
dynamic clipping plane so the SceneCapture can hide everything that is between it and the
portal, not rendering it in the portal surface.

2.4. Redirecting Shots & Projectiles

When shooting with a trace if the trace hits a portal it will be redirected by him. To
make this possible we spawn an actor that will help redirect the shot, on that portal’s target
and we convert his location and rotation based on the target. Then we set his position to the
converted location, for the rotation we have to set it based on the converted rotation and
add the controller rotation of the player that shooted to the portal. Since these are new
traces that are created by the portal we have to check again if they found a player, if so they
will apply the damage from the weapon that has been used by the player when shooting.
After all this we destroy the actor that helped us redirect the shot.

The projectile works a little bit differently, we start by saving his velocity in the
moment of impact. Then we convert the rotation and the position. Then we set the projectile
position, and the rotation, for the rotation we have to set it based on the converted rotation
and add the controller rotation of the player that shooted to the portal then we apply the
previous saved velocity with the dot product of his vectors. After that we invert the velocity
so the projectile can keep his momentum and velocity to the new trajectory.

3. Weapons
3.1. Weapon Base

Our weapon base class contains all the information needed to create any type of
weapon, hence we have shooting types, Linetrace or Projectiles, Reloadable or Not, and all
the weapons that currently exist.

This class Handles every common action between all the weapons that currently
exist, such as holding ammo, handling fire-rates, reloading, receiving ammo, and pick-up
logic, and finally the shooting. We also made the reload so that the player would not lose the
bullets that were in the clip, and if the player tries to reload and he does not have sufficient
bullets to fill the clip, the clip size will update with the amount of the current bullets.

The weapon logic is not implemented inside this class, since we have weapons that
derive from this main class.

When shooting instead of looking through which type of weapon it is, we filter the
results. This is way faster than simply checking for every single weapon that has been
created, as so in this project, we check if the weapon is of type Linetrace or Projectile.

By doing this we cut the options by half already, in this case we have a small
amount of weapons, but in a bigger project we have a variety of weapons we would make
sub filters to achieve the weapon in the quickest time possible.

3.1.1. Rocket Launcher
The rocket launcher spawns a projectile that will look for anything to blow up, unless

if he finds a portal, if so he will be redirected to the new location provided by the portal
traveling.

If he hits another thing he will explode, upon on exploding, he will search for players
inside his blast radius if he finds a player the projectile will get the players distance from the
center to the location that the player is in, after check the distance, the projectile will
calculate the amount of the damage multiplier will be applied to him, based on that distance.
Is important to say that we will always receive full damage if we are inside 20% of the blast
radius to the center, if not he will calculate the damage multiplier starting from that 20%
mark to the end of the radius.

The damage calculation, this one was tricky, but pretty important, the distance check
would not know if the character was behind a wall, and to fix it, we decided to check from the
center of the blast radius for player body parts.

In the end if a character's knees are behind a wall but the arms are not, we would
damage what is exposed but not what's hidden.

With this, we have our radial damage complete and the possibility to avoid damage if
the character is hidden behind a wall.

The logic behind this weapon is pretty simple:
We shoot in a straight line from the center of the camera to the “infinite and beyond”. If we
find a player we apply the damage from our base class, but if we find the head of the player
we have to get his max health and apply all that damage to him, so he will never survive.

If the trace found a portal, he will redirect.

3.1.2. Assault Rifle
The logic behind this weapon is pretty simple:

We shoot in a straight line from the center of the camera to the “infinite and beyond”. If we
find a player we apply the damage from our base class, but if we find the head of the player
we have to get his max health and apply all that damage to him, so he will never survive.

If the trace found a portal, he will redirect.

3.1.3. Shotgun
The logic behind this weapon is pretty simple:

We shoot in a straight line from the center of the camera to the “infinite and beyond” but we
apply a random value to the end of the trace so he can spread from the center, he keeps
doing this until the max number of spread shots is achieved. If we find a player we apply the
damage from our base class.

If the trace found a portal, he will redirect.

4. Ammo
4.1. Ammo Base

When colliding with ammo the object will check if the player has the weapon or not, if
so, the ammo will be delivered to the player who collided with it, if not the ammo will stay on
her spot and wait for someone to pick it up.

5. Game Start
5.1. Color Attribution & Match Start

When a player logs-in he will be added to an array and their input will be
disabled until a value that is incremented reaches the number of max players per match,
if so, the game will start.

Upon starting the game the players in the array will get his colors and their
input enabled.

6. Sessions
The Unreal engine provides all the basics you need to host and join a game.

However, once we exit the editor, the simple action of joining a server no longer works.

Within the editor, the Unreal engine provides an online sub-system that is no longer
present once you are in a standalone game instance.

What we need to do is implement this on our own, or use one of the provided, for
development purposes the OnlineSubSystemNull is suggested to work for LAN gameplay
only. And we have used it. So no port-forwarding is required since it only works in a LAN
environment

For simplicity purposes we can only join the first session that is found from the
created ones, and we cannot destroy sessions and handle network errors upon host
disconnecting, the implementation of the previous is not hard to do but we decided to go
simple. Although we are not trying saying that the previous implementations are
unnecessary which they AREN’T.

So to make this beauty work, we start by enabling the OnlineSubSystem module in
your project Build.cs. This module will offer us all the Session related code. An
OnlineSubSystem has a lot of other functionalities, such as user data, statistics,
achievements, and much more. But we are only really interested into the “SessionInterface”
of it.

And now we know that there are two major Interfaces involved: IOnlineSubsystem
and IOnlineSession each handles crucial parts of integrating our game with the subsystem.

In the end everything is basically driven by sessions, we notify a service about our
servers presence, the service is then queried by clients who want to find active game
sessions.

A client then requests to join a given session, and then if everything is well, the client
is allowed to travel to that server.

7. External Info

7.1. Internet Sources

Why 0.1 Does Not Exist In Floating-Point - Exploring Binary

GlobalVectorConstants::KindaSmallNumber | Unreal Engine Documentation

Actor Replication | Unreal Engine Documentation OnlineSubsystemNull | Unreal Engine

Community Wiki

7.2. Book Sources

“A Tour of C++”, Bjarne Stroustrup, 2013

https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/
https://docs.unrealengine.com/4.27/en-US/API/Runtime/Core/Math/GlobalVectorConstants__KindaSmal-/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Networking/Actors/
https://unrealcommunity.wiki/online-multiplayer-vkje2zyn
https://unrealcommunity.wiki/online-multiplayer-vkje2zyn

